hcyncn

## eMobility

## **Prax & EV Chargers**



Power Magnetic Component Solutions for Efficient and Reliable **Electric Vehicle Chargers** 



### hcyncn 👓 👓

X

"The number of fast and superfast electrical car chargers is exponentially increasing. Maximum power density, excellence in thermal management, high reliability components always assuring a cost driven design are the key requirements that the market is demanding. Our solutions are helping EV charger manufacturers meet these requirements"

Marc Maneja, VP Sales & Marketing and eMobility Solutions Specialist, PRAX





At Prax we design and manufacture inductive components for power electronics applications, creating added value through customized solutions that help our clients in the industrial and automotive sectors to create reliable and high-quality products.

Prax core competencies are magnetic components and filtering technologies combining a high level of customization possibilities with a comprehensive range of standard components. With a special focus on design support to our customers' engineering teams, prototypes and specifications are released within a short time frame.



Global customers need global solutions. Besides our outstanding design support, PRAX strives to be a strategic partner by providing global service and support. With a multi-site manufacturing approach, PRAX offers flexible operations, allowing us to establish customized supply chains according to customer requirements.

With our long experience in design and industrialization of inductive components and EMC filters, PRAX offers services based on component specifications, cost analysis, materials selection and pre-industrialization analysis.



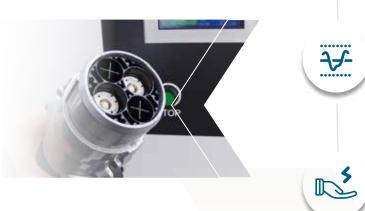
Maximum electrical performance in minimum space.

Excellent thermal management to ensure the high quality standards of your end customer.

A partner able to support you from the design phase to the industrialization, matching customers' expectations, assuring flexibility in the demand management.

Working with many EV Charger Manufacturers we have found that the following considerations are fundamental at the time of designing Power Electronics:

#### Strategic needs:


- Design flexibility with components that guarantee maximum adaptation to your requirements
- ⊘ Know-how ownership
- ⊘ Full control of the power electronics design
- Go beyond inherent limitations of usage of externally designed power modules
- ⊙ Design focused on Maximum Uptime
- Reliable partner/supplier over the project lifetime

#### Design needs:

- Maximum power density and minimum losses
- O High reliability components
- Optimized layout for heat dissipation with forced air or cool plate
- S Excellent thermal management
- Cutting-edge technology chargers with innovative switching topologies
- Experienced design partner in critical components including custom magnetics

⊘ Cost driven design

## What we propose



**Custom as standard**: Customized solutions industrialized as standard.

Maximum power density, minimum losses, and excellent thermal management thanks to our innovative technology **xgap**.

Flexible, reliable and agile partner over the project lifetime with early involvement in the desing activities.

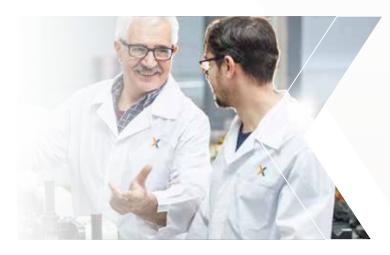
#### Achieving the optimal solution is possible by balancing the following keys:

- Custom optimized solutions for most advanced resonant topologies
- Complete magnetic components range for EV Chargers
- Single transformer and inductor solutions up to 30kW
- Transformer + resonant inductor integrated in one component or in one assembly
- ⊘ Small footprint
- Extended thermal and mechanical protection with different potting solutions
- Magnetic components designs minimizing losses

- Support since the early beginning of the project
- High performance designs with Xgap multigap technology solutions
- Smooth transition to production with own manufacturing facilities
- S Cost effective design focus
- Losses and thermal performance simulations
- ◎ Quick turn samples/prototypes
- ⊙ IEC-61851 compliance
- ⊙ IATF 16949 quality procedures

⊘ Custom mechanical solutions






## Complete magnetic component solutions for your DC chargers

#### As an R&D Engineer you expect:

- Outstanding support during the design phase of the components
- O Quick turn samples
- Advanced simulation capabilities for optimal customization and performance





#### As a Supplier Quality Engineer you expect:

- ⊘ Reliable supplier
- ISO 9001

> ISO 14001

- O APQP design processes
- > FMEA
- ➢ IATF16949

#### As a Commodity Manager you expect:

- Ost-effective components
- Flexible supply chain
- Seliable lead times
- ⊙ Consignment stock, Kanban, JIT sourcing





## A gap Technology and Product Overview

•

hcyncn

# Prax introduces X9ap technology as an optimal solution for EV magnetic components

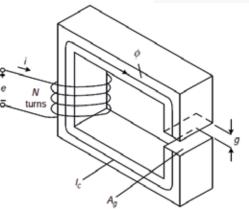
The use of **xgap** technology allows for the creation of cost-effective solutions with maximum power density thanks to the reduction of core volume around 30%, while overall size reductions up to 20%. **xgap** technology also minimizes losses and offers optimal heat dissipation of windings in all type of cooling systems. All of these advantages match the requirements of magnetic components in EV applications.



## What is xgap technology based upon?

A gap is a portion of air inside a magnetic core path. It is used for two main purposes:

#### 1. Energy storage in inductors or chokes


The energy stored in an inductor depends on current and inductance factor. A gap or distributed airgap is commonly needed in cores to store such energy.

#### 2. Inductance value and tolerance reduction

Introducing a gap decreases magnetic core permeability, which reduces its inductance factor.

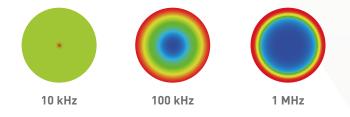
Non-gapped cores inductance tolerance is around  $\pm 25\%$ , while gapped cores can be reduced to  $\pm 10\%$ 

$$E = \frac{1}{2} \cdot L \cdot I^2$$



 $L = N^2 \cdot A_1$ 

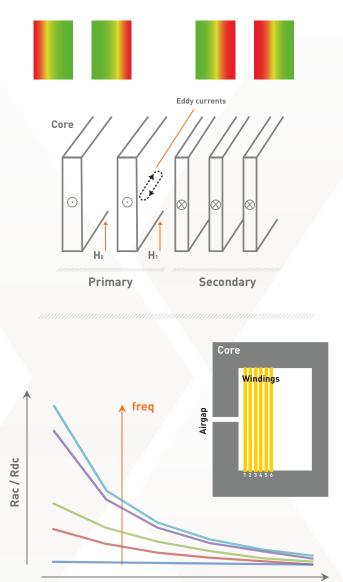



## Main effects generating losses due to high frequency in windings

#### 1. Skin effect

An isolated round conductor carrying AC current generates a concentric alternating magnetic field which induces Eddy Currents.

These currents oppose to normal current flow in the center of the conductor, increasing the effective current closer to the conductor surface.


The overall effect is that total current flows in a smaller perimetral area. This effect intensifies as frequency increases. Current flow concentrates in an equivalent perimetral cylinder at the surface of the conductor. This cylinder thickness  $\delta$  is known as skin depth.



### 2. Proximity effect

Proximity effect appears when the distribution of current in one layer of a winding influences the distribution in another layer, always in the same winding.

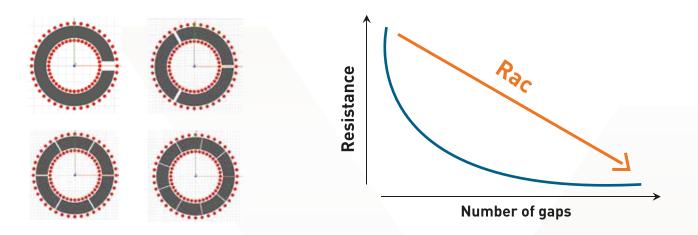
Such proximity effect, therefore, increases winding resistance (Rac)



#### 3. Fringing effect

Fringing effect happens when a magnetic flux near a core airgap bends out.

The distance over which these flux fringes out is basically proportional to the length of the airgap.


One single gap can be splited into several smaller gaps, preserving total volume and length. By doing so, effective permeability and energy storage capabilities are still the same, but the flux fringing is significantly reduced.



## What is xgap Technology?

**Xgap** technology is a multi-gap approach for inductors and transformers highly recommended for resonant topologies and widely used in DC charging applications.

This multi-gap technology has been developed by PRAX to reduce winding AC losses. It allows a large air gap to be evenly distributed on a toroid to minimize fringing effect by splitting the gap into smaller gaps. With these evenly distributed gaps (up to 12 or 15 on a single toroid), losses are reduced exponentially because of the Rac reduction.

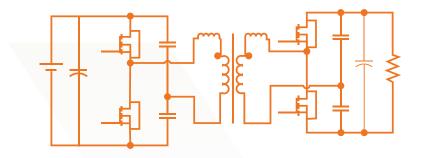


Prax's expertise allows many possibilities by applying this technology:

- S Xgap technology-based set of transformers and chokes
- > Multi-gap core solution with triple-insulated litz wire

## Advantages of xgap technology:

- Winding area increases by means of using toroid formats
- > High current and high frequency capabilities by low loss ferrite material
- Distributed gap component, minimizing fringing losses
- Tighter inductance tolerance (from ± 8% to ± 15%)


- Best heat dissipation of windings in any type of cooling systems
- Finite Elements Analysis (FEA) simulations available for extra accurate loss calculation
- Reduction of core volume around 30%, allowing an overall size reduction up to 20%
- Cost-effective solution compared with PQ or PM core formats





## xgap technology used as

\_\_\_\_\_



### **prax Differentials**

- ✓ Finite Elements Analysis (FEA) simulations available for accurate loss calculations
- $\oslash$  Narrow tolerance for the inductance value (from  $\pm$  8% to  $\pm$  15%)
- ✓ Wide inductance value range by adjusting gap thicknesses
- ✓ Off-the-shelf solutions and quick, easy and cost-effective custom adaptations available
- ✓ 10+ experience years in custom multi-gap magnetic component solutions





hcyncn

### **Product Overview**

**Custom as Standard** – Within Prax magnetic components subcategories, our default way of co-operation with our customers' R&D teams is to offer customized designs that are optimized to the specific requirements of every application.



### Common Mode Chokes

Common noise filtering chokes. For a discrete component EMC filtering approach, Prax offers a wide range of CMCs in any format and with world-class materials (soft ferrite, nanocrystaline).



## **Current Transformers**

AC current measuring magnetic components for low and high frequency applications. Different material grades allow either high accuracy for critical low frequency metering applications or consumption control in high frequency (SMPS).



## **EMC** Filters

EMC filtering solutions in single-phase and three-phase for various industrial and renewable energy applications.



## **Input and Output Chokes**

Mid-power range chokes, for various high frequency switching applications. Copper foil, flat and round wire, combined with several magnetic materials (soft ferrite, Sendust, iron powder, amorphous) and multiple formats (E-cores, C-cores, toroidal) allow Prax to meet virtually any customer requirement.



### hcyncn



## **PFC Chokes**

PFC chokes specifically designed to maximize power of a circuit by driving voltage and current with the same phase.

## **Planar Transformers**

Contraction of the second seco





If low profile, high efficiency and mechanical reliability are a must for customer final application, planar transformers are the optimal solution for high frequency converters.

Combinations of specially shaped soft ferrite cores with multilayer PCBs and copper tracks make a very compact component in a high power density solution.

## **Power Inductors**

Standard power inductors are proven to have limitations for new high current demanding applications. Prax advanced high current power inductors combine special materials and shapes with flat wire helical winding for a very compact and efficient design.

## **Pulse Transformers**

Design and manufacturing of Pulse and Gate Drive transformers for transmitting a control signal assuring isolations between low and high voltage circuits.

## SMPS Transformers

Switch-mode power supply main transformers requirements depend on power range, topology, isolation and frequency. Therefore, a wide range of materials, formats and winding technologies are available. Our aim is to optimize size, efficiency and cost.

Designs available for topologies such as flyback, forward, push-pull, half-bridge, full-bridge and advanced resonant topologies.

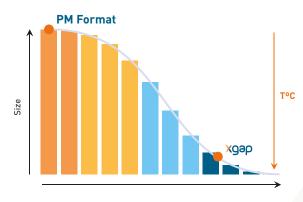




## Application case 1 **11kW Onboard Charger for BEV**

Transformer and Resonant Choke for LLC.






 Compact, yet fully functional transformer and choke for LLC topology for an 11KW onboard charger



#### Solution

- S xgap technology-based transformer and choke
- Multi-gap core solution with triple-insulated litz wire
- > Toroid format for both components
- S Interconnected components



#### **Benefits**

- Reduction in number of components used
  - Solume savings of around 30% compared to other traditional formats such as PQ or PM
  - Optimal cooling capabilities

### Application case 2 30kW DC Fast Charger

30kW Transformer for Bi-Directional Phase Shifted Dual Active Bridge







#### Requirement

- Optimized power density
- Safety and reliability
- Suitable for use in high demand cutting-edge resonant topologies
- Seasy mounting

#### Solution

- > Litz wire for high frequency
- MultiGap technology XGap for minimizing fringe effect losses
- > High insulation
- > Toroidal shape for high magnetic path optimization
- ⊙ Integrated custom mechanical solution

#### Benefits

- 20% size reduction vs traditional multi-E core structure
- ⊘ ~16% reduction in losses
- Optimized transformer shape for maximum heat dissipation



## Application case 3 Scalable Three Phase EV Fast Charger

3-in-1 Assembly PFC Choke for Active PFC Rectifier.



#### Requirement

- S Compact and sturdy solution
- Design for minimum weight
- S Enhanced thermal behavior



#### Solution

- ➢ High operating temperature design up to 155℃
- > Toroidal shape for high magnetic path optimization
- ⊘ Integrated custom mechanical solution
- ⊘ Potted 3-in-1 Assembly
- O Polymer based mechanical assembly solution



#### **Benefits**

- > Up to 70% weight reduction on the overall solution
- O Additional +25°C working temperature design



## **Prax** The Company



## **Company focus**

......

At Prax we design and manufacture inductive components for power electronics applications, creating added value through customized solutions that help our clients in the industrial and automotive sectors to create reliable and high-quality products.

Prax core competencies are magnetic components and filtering technologies combining a high level of customization possibilities with a comprehensive range of standard components.

With a special focus on design support to our customers' engineering teams, prototypes and specifications are released within a short time frame.

Our long experience in design and industrialization of inductive components allows PRAX to offer services based on component specifications, cost analysis, materials selection and pre-industrialization analysis.

Global customers need global solutions. Besides our outstanding design support, PRAX strives to be a strategic partner by providing global service and support. From our factory, PRAX offers flexible operations, allowing us to establish customized supply chains according to customer requirements.

#### Where to find us











## We are your CUSTOM factory

Optimized tailored solutions for magnetic components in power conversion applications



Components delivered worldwide

## +1200

Part numbers in the market 100%

Designed in Spain

### Our obsession: High Quality Standards Mindset

ISO 900













#### eMobility

## Prax & EV Chargers

Power Magnetic Component Solutions for Efficient and Reliable **Electric Vehicle Chargers** 

Do you like this solution? Please contact Heynen for distribution in BENELUX.

hcyncn eeee

heynen@heynen.com NL tel: +31 (0)485-550909 BE tel: +32 (0)11-600909 LUX tel: +352(0)26-910781

