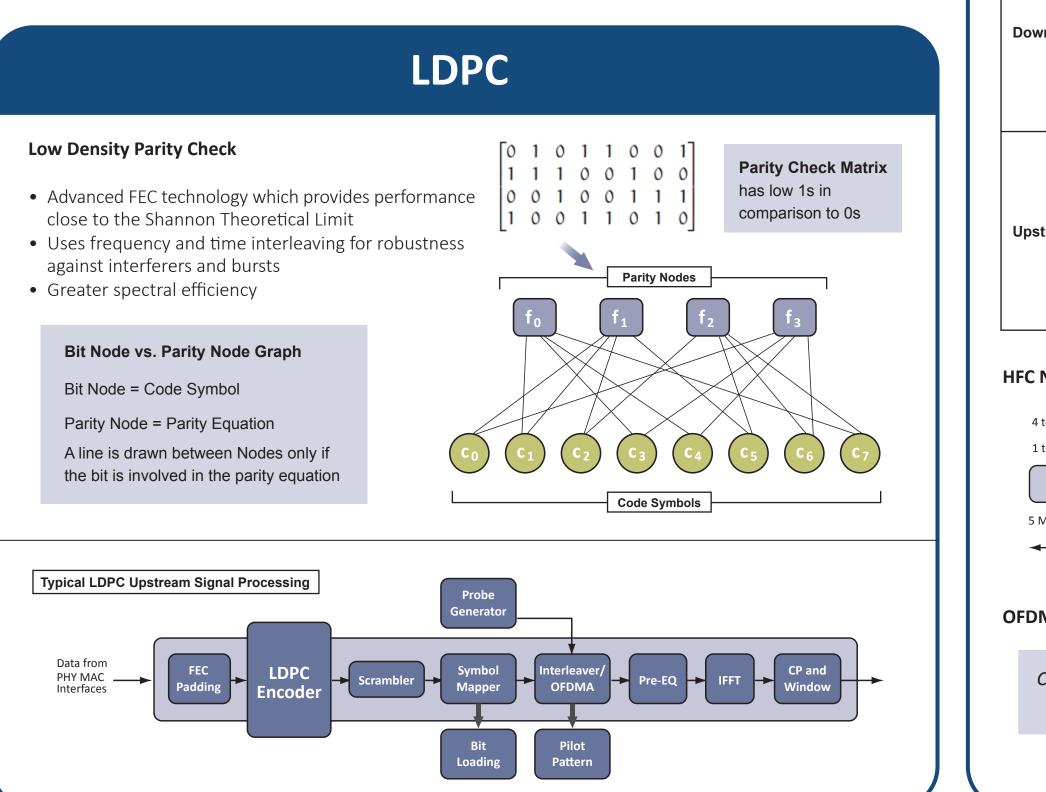
DOCSIS 3.1 Basics

OFDM BASICS

Orthogonal Frequency Division Multiplexing

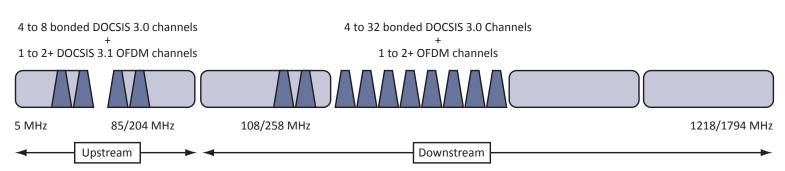

- OFDM is a transmission technique that consists of multiplexing multiple individual Sub-carriers with precise frequency spacing
- For DOCSIS 3.1, these Sub-carriers are QAM modulated
- Orthogonality enables Sub-carriers to be closely spaced together, without interfering with each other
- Precise control of Spectrum usage
- OFDM is used in other transmission technologies: Wireless LAN, LTE, Digital Broadcasting DAB/DVB, DSL

OFDM Sub-Carriers

- Multiple OFDM Sub-carriers can be packed close together, without interfering with each other
- Sub-carriers have precise frequency
- Much more spectrum control: – 25 kHz or 50 kHz Sub-carriers
- Sub-carriers are grouped to form an OFDM channel that can be from 24 to 192 MHz wide

OFDMA Upstream

- DOCSIS 3.1 replaces ATDMA with OFDMA
- Flexibility: Can shut on/off OFDMA Sub-carriers to adapt legacy US channels with D3.1 US
- Orthogonal Frequency Division Multiple Access Time and frequency methods are used to support multi-user transmission and for backwards compatibility with D3.0 US channel bonding • More efficient US bandwidth


D99-00-009P Rev.A00 | Source: CableLabs® Data-Over-Cable Service Interface Specifications DOCSIS® 3.1 Physical Layer Specification CM-SP-PHYv3.1-103-140610

- legacy services
- Plant conditions

Spectrum Usage

Spectrum Usage Evolution Example						
		DOCSIS 3.0		DOCSIS 3.1		
	Parameter	Current	Stage 1	Stage 2	Stage 3	
	Spectrum (MHz)	54 to 1002	108 to 1002	258 to 1218 with Amp upgrade	500 to 1794 with Tap upgrade	
Downstream	Modulation	QAM-256	QAM-256	QAM-1024 and higher	QAM-1024 and higher	
Downstream	Equivalent # of Channels	8	24	158	200	
	Throughput (bps)	300M	1G	7G	10G+	
	Spectrum (MHz)	5 to 42/65	5 to 85	5 to 204	5 to 400	
Upstream	Modulation	QAM-64	QAM-64	QAM-256 and higher	QAM-1024 and higher	
opsiream	Equivalent # of Channels	4	12	32	60	
	Throughput (bps)	100M	300M	1G+	2G+	

HFC Network Expansion

OFDM Channel Capacity

Channel Capacity =

MULTIPLE OFDM SUB-CARRIERS

OFDM D/S PHY

Channel

• OFDM PHY Channel consists of multiplexed Sub-carriers - Can be from 24 to 192 MHz wide • Sub-carriers are individually configurable 25 kHz or 50 kHz Sub-carriers

– Modulation order: QAM-256, QAM-512, QAM-1024, QAM-2048, QAM-4096 • Sub-carriers can be On or Off depending on: - Spectrum availability: co-existence with

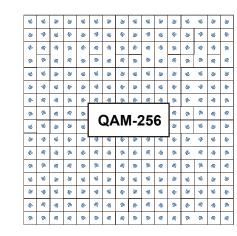
- Noise disturbers, such as LTE interference

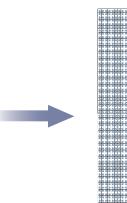
SPECTRUM and CAPACITY

256

• Backwards compatibility support of D3.0 bonded channels

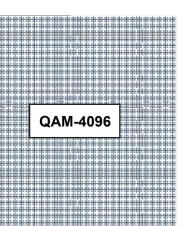
Spectral Efficiency x Channel Bandwidth


Sample Channel Bandwidth						
Spectral Efficiency	Channel Capacity					
8.1996	1.5 Gbps					
8.1996	787 Mbps					
8.1996	394 Mbps					
8.1966	197 Mbps					
	Spectral Efficiency 8.1996 8.1996 8.1996					


	Parameter	Value		
	Frequency range	54 MHz to 1002 MHz. Extended ranges include lower downstream edges of (108 and 258 MHz) and upper downstream edges of 1218 and 1794 MHz		
	RF channel spacing (design bandwidth)	24 to 192 MHz		
	One way transit delay from headend to most distant customer	≤ 0.400 ms (typically much less)		
	Signal-to-Composite Noise Ratio	≥ 35 dB		
	Carrier-to-Composite triple beat distortion ratio	Not less than 41 dB		
5	Carrier-to-Composite second order distortion ratio	Not less than 41 dB		
E A	Carrier-to-Cross modulation ratio	Not less than 41 dB		
	Carrier-to-any other discrete interference (ingress)	Not less than 41 dB		
DOWNSTREAM	Maximum amplitude variation across the 6 MHz channel (digital channels)	≤ 1.74 dB pk-pk / 6 MHz		
	Group Delay Variation*	≤ 113 ns over 24 MHz		
	Micro-reflections bound for dominant single echo	-20 dBc for echos ≤ 0.5 μs -25 dBc for echos ≤ 1.0 μs -30 dBc for echos ≤ 1.5 μs -35 dBc for echos > 2.0 μs	-40 dBc for echos > 3.0 μs -45 dBc for echos > 4.5 μs -50 dBc for echos > 5.0 μs	
	Carrier hum modulation	Not greater than -30 dBc (3%)		
	Maximum analog video carrier level at the CM input	17 dBmV		
	Maximum number of analog carriers	121		
	Frequency range	From a lower band-edge of 5 MHz to upper band-edge of 42 and 65 MHz. Extended ranges include upper upstream band-edges of 85, 117, and 204 MHz		
	One way transit delay from most distant customer to headend	≤ 0.400 ms (typically much less)		
UPSTREAM	Carrier-to-interference plus ingress ratio	Not less than 25 dB		
	Carrier hum modulation	Not greater than -26 dBc (5.0%)		
	Maximum amplitude variation across the 6 MHz channel (digital channels)	≤ 2.78 dB pk-pk / 6 MHz		
	Group Delay Variation*	≤ 163 ns over 24 MHz		
	Micro-reflections bound for dominant single echo	-16 dBc for echos ≤ 0.5 μs -22 dBc for echos ≤ 1.0 μs -29 dBc for echos ≤ 1.5 μs	-35 dBc for echos > 2.0 μs -42 dBc for echos > 3.0 μs -51 dBc for echos > 4.5 μs	
	Seasonal and diurnal reverse gain (loss) variation	Not greater than 14 dB min to max		

HIGHER ORDER QAM

Higher Order QAM Modulation with Dynamic Adaptation


- D3.1 supports multiple modulation profiles: base modulation and higher modulation profiles • Different profiles can be used depending on customer line quality
- Higher quality lines can utilize higher modulation profiles
- Dynamic adaptation to line conditions. When an impairment appears, the affected OFDM Sub-carrier can downshift to a lower order modulation to help ensure robust, error free transmission

Modulation Capability						
Modulation	SNR Min	SNR Max	bps/Hz			
QAM-256	26	29	8			
QAM-512	29	32	9			
QAM-1024	32	35	10			
QAM-2048	35	38	11			
QAM-4096	38	41	12			

RF TABLE

- LDPC FEC can yield a nearly 2 bit gain from Reed Solomon FEC
- Current D3.0 networks that support QAM-256 can support QAM-1024 with D3.1

